metabelian, supersoluble, monomial
Aliases: C34.4C6, C32⋊C9⋊7C6, C32⋊C18⋊1C3, C33.23(C3×C6), C33.55(C3×S3), C34.C3⋊3C2, C3⋊S3⋊23- 1+2, C32.37(S3×C32), C3.2(S3×3- 1+2), C32.20(C32⋊C6), (C3×3- 1+2)⋊13S3, C32⋊2(C2×3- 1+2), (C3×C9)⋊5(C3×S3), (C32×C3⋊S3).2C3, (C3×C3⋊S3).4C32, C3.13(C3×C32⋊C6), SmallGroup(486,104)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C34.C6
G = < a,b,c,d,e | a3=b3=c3=d3=1, e6=b, eae-1=ab=ba, ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1d-1, ede-1=d-1 >
Subgroups: 472 in 108 conjugacy classes, 24 normal (15 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C18, C3×S3, C3⋊S3, C3×C6, C3×C9, C3×C9, 3- 1+2, C33, C33, S3×C9, C2×3- 1+2, S3×C32, C3×C3⋊S3, C3×C3⋊S3, C32⋊C9, C32⋊C9, C3×3- 1+2, C3×3- 1+2, C34, C32⋊C18, S3×3- 1+2, C32×C3⋊S3, C34.C3, C34.C6
Quotients: C1, C2, C3, S3, C6, C32, C3×S3, C3×C6, 3- 1+2, C32⋊C6, C2×3- 1+2, S3×C32, C3×C32⋊C6, S3×3- 1+2, C34.C6
(2 8 14)(3 15 9)(5 11 17)(6 18 12)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)
(2 8 14)(3 9 15)(5 17 11)(6 18 12)
(1 13 7)(2 8 14)(3 15 9)(4 10 16)(5 17 11)(6 12 18)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)
G:=sub<Sym(18)| (2,8,14)(3,15,9)(5,11,17)(6,18,12), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18), (2,8,14)(3,9,15)(5,17,11)(6,18,12), (1,13,7)(2,8,14)(3,15,9)(4,10,16)(5,17,11)(6,12,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)>;
G:=Group( (2,8,14)(3,15,9)(5,11,17)(6,18,12), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18), (2,8,14)(3,9,15)(5,17,11)(6,18,12), (1,13,7)(2,8,14)(3,15,9)(4,10,16)(5,17,11)(6,12,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18) );
G=PermutationGroup([[(2,8,14),(3,15,9),(5,11,17),(6,18,12)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18)], [(2,8,14),(3,9,15),(5,17,11),(6,18,12)], [(1,13,7),(2,8,14),(3,15,9),(4,10,16),(5,17,11),(6,12,18)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)]])
G:=TransitiveGroup(18,160);
(1 7 4)(2 5 8)(11 17 23)(12 24 18)(14 20 26)(15 27 21)
(1 7 4)(2 8 5)(3 9 6)(10 16 22)(11 17 23)(12 18 24)(13 19 25)(14 20 26)(15 21 27)
(1 26 17)(2 27 18)(4 20 11)(5 21 12)(7 14 23)(8 15 24)
(1 26 17)(2 18 27)(3 10 19)(4 20 11)(5 12 21)(6 22 13)(7 14 23)(8 24 15)(9 16 25)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)
G:=sub<Sym(27)| (1,7,4)(2,5,8)(11,17,23)(12,24,18)(14,20,26)(15,27,21), (1,7,4)(2,8,5)(3,9,6)(10,16,22)(11,17,23)(12,18,24)(13,19,25)(14,20,26)(15,21,27), (1,26,17)(2,27,18)(4,20,11)(5,21,12)(7,14,23)(8,15,24), (1,26,17)(2,18,27)(3,10,19)(4,20,11)(5,12,21)(6,22,13)(7,14,23)(8,24,15)(9,16,25), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)>;
G:=Group( (1,7,4)(2,5,8)(11,17,23)(12,24,18)(14,20,26)(15,27,21), (1,7,4)(2,8,5)(3,9,6)(10,16,22)(11,17,23)(12,18,24)(13,19,25)(14,20,26)(15,21,27), (1,26,17)(2,27,18)(4,20,11)(5,21,12)(7,14,23)(8,15,24), (1,26,17)(2,18,27)(3,10,19)(4,20,11)(5,12,21)(6,22,13)(7,14,23)(8,24,15)(9,16,25), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27) );
G=PermutationGroup([[(1,7,4),(2,5,8),(11,17,23),(12,24,18),(14,20,26),(15,27,21)], [(1,7,4),(2,8,5),(3,9,6),(10,16,22),(11,17,23),(12,18,24),(13,19,25),(14,20,26),(15,21,27)], [(1,26,17),(2,27,18),(4,20,11),(5,21,12),(7,14,23),(8,15,24)], [(1,26,17),(2,18,27),(3,10,19),(4,20,11),(5,12,21),(6,22,13),(7,14,23),(8,24,15),(9,16,25)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)]])
G:=TransitiveGroup(27,208);
42 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | ··· | 3R | 6A | 6B | 6C | 6D | 9A | ··· | 9F | 9G | ··· | 9L | 18A | ··· | 18F |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 9 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | ··· | 6 | 9 | 9 | 27 | 27 | 9 | ··· | 9 | 18 | ··· | 18 | 27 | ··· | 27 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 6 |
type | + | + | + | + | |||||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | S3 | C3×S3 | C3×S3 | 3- 1+2 | C2×3- 1+2 | C32⋊C6 | C3×C32⋊C6 | S3×3- 1+2 | C34.C6 |
kernel | C34.C6 | C34.C3 | C32⋊C18 | C32×C3⋊S3 | C32⋊C9 | C34 | C3×3- 1+2 | C3×C9 | C33 | C3⋊S3 | C32 | C32 | C3 | C3 | C1 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 1 | 6 | 2 | 2 | 2 | 1 | 2 | 2 | 6 |
Matrix representation of C34.C6 ►in GL6(𝔽19)
11 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
18 | 1 | 7 | 0 | 0 | 0 |
0 | 6 | 0 | 11 | 0 | 0 |
4 | 0 | 0 | 0 | 1 | 0 |
14 | 14 | 0 | 0 | 0 | 7 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
11 | 12 | 7 | 0 | 0 | 0 |
0 | 13 | 0 | 1 | 0 | 0 |
9 | 17 | 0 | 0 | 7 | 0 |
3 | 0 | 0 | 0 | 0 | 11 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
2 | 9 | 0 | 7 | 0 | 0 |
13 | 17 | 0 | 0 | 7 | 0 |
14 | 16 | 0 | 0 | 0 | 7 |
14 | 16 | 0 | 0 | 0 | 15 |
14 | 6 | 0 | 10 | 0 | 0 |
2 | 5 | 0 | 11 | 1 | 1 |
8 | 17 | 11 | 13 | 0 | 17 |
12 | 11 | 0 | 14 | 0 | 6 |
10 | 6 | 0 | 2 | 0 | 5 |
G:=sub<GL(6,GF(19))| [11,0,18,0,4,14,0,1,1,6,0,14,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,7],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[1,0,11,0,9,3,0,11,12,13,17,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,11],[11,0,0,2,13,14,0,11,0,9,17,16,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[14,14,2,8,12,10,16,6,5,17,11,6,0,0,0,11,0,0,0,10,11,13,14,2,0,0,1,0,0,0,15,0,1,17,6,5] >;
C34.C6 in GAP, Magma, Sage, TeX
C_3^4.C_6
% in TeX
G:=Group("C3^4.C6");
// GroupNames label
G:=SmallGroup(486,104);
// by ID
G=gap.SmallGroup(486,104);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,115,224,3244,3250,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=1,e^6=b,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1*d^-1,e*d*e^-1=d^-1>;
// generators/relations